

JMQT Version 1.0 Specifications

Table of Contents

1. What is JMQT (JSON Message Queueing and Transfer) ? 1

2. Purpose of this document 2

3. Terminology 2

4. Version History 3

5. Protocol Overview 3

6. Packet Types 3

7. Packet Structure 4

a. Auth Packet 4

b. Auth Acknowledgement 4

c. Connect Packet 5

d. Connect Acknowledgement 5

e. Heartbeat Packet 6

f. Heartbeat Acknowledgement 6

g. Subscribe Packet 7

h. Subscribe Acknowledgement 7

i. Unsubscribe Packet 8

j. Unsubscribe Acknowledgement 8

k. Publish Packet 9

l. Publish Acknowledgment 9

m. Push Packet 10

n. Push Acknowledgment 11

o. Disconnection Packet 11

8. Status Codes 11

9. Operational Behaviour 12

a. Quality of Service 12

b. Retained Packets 13

c. Persistent Subscription 13

d. P2P and Control Packets 14

e. Server side Sub, Unsub and Push 15

f. Disconnection behaviour 15

10. Authentication and security 15

11. Default TCP Ports 16

1. What is JMQT (JSON Message Queueing and Transfer) ?

JMQT is a ​publish-subscribe based IoT and messaging protocol​, which works on top of TCP/IP. It is a

text based protocol​, where the packets are build in ​JSON (JavaScript Object Notation) format and

converted into text.

JMQT has been primarily developed for IoT and messaging applications, where multiple clients are

connected to a server in order to exchange messages between them. JMQT also supports P2P (Point

to Point) messaging in addition to publish-subscribe operations. ​JMQT protocol is ​open & free​, and

anyone can ​use​ this protocol ​without any license agreement​.

2. Purpose of this document

This document covers the specifications of JMQT protocol version 1.0. The primary purpose of this

document is to define the principles of the JMQT protocol 1.0 along with sample packets and

operational behaviour.

3. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD

NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as

described in IETF RFC 2119 ​[RFC2119]​.

Socket:

Standard socket connection over TCP/IP as defined in IETF RFC 147 [​RCF147​].
WebSocket:

Standard WebSocket connection over TCP/IP as defined in IETF RFC 6455 [​RFC6455​].
JSON:

Javascript Object Notation as defined in IETF RFC 7159 [​RFC7159​].
Client:

A program or device that uses JMQT. A Client always establishes the Network Connection to the

Server. It can

● Publish Packets that other Clients might be interested in.

● Subscribe to request Packets that it is interested in receiving.

● Unsubscribe to remove a request for Packets.

● Disconnect from the Server.

Server:

A program or device that acts as an intermediary between Clients which publish packets and Clients

which have made Subscriptions. A Server

● Accepts Network Connections from Clients.

● Accepts Packets published by Clients.

● Processes Subscribe and Unsubscribe requests from Clients.

● Forwards Packets that match Client Subscriptions.

Subscription:

A Subscription comprises a Channel Name and a maximum QOS (see ​section 9.a for QOS). A

Subscription can associated with a single Session or can be persistent depending on the Persistence

Flag (see section 9.c​). A Session can contain more than one Subscription. Each Subscription within a

session has a different Channel Name.

Channel Name:

The label attached to a packet which is matched against the Subscriptions known to the Server. The

Server sends a copy of the published packet to each Client that has a matching Subscription.

JMQT 1.0 Specifications (2 of 16)

https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc147
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc7159

Session:

A stateful interaction between a Client and a Server. Some Sessions last only as long as the Network

Connection, others can span multiple consecutive Network Connections between a Client and a

Server.

JMQT Packet:

A packet of information containing JSON data that is sent across the Network Connection. The JMQT

specification defines fifteen different types of Packet, one of which (the Publish packet) is used to

convey messages.

4. Version History

Date Description Prepared By Remarks

3 Dec 2018 Initial Document Preparation Shubhadeep Banerjee Defining JMQT 1.0

5. Protocol Overview

JMQT consists of clients communicating to a server, primarily using ​Socket (or Web Socket)

connection. A client may be either a publisher or a subscriber.

JMQT is built on the concept of ​Channels​, which are used by the publishers to ​send messages, and

are used by the subscribers to ​receive messages. When a publisher has a new message to distribute,

it sends a ​‘publish’ packet to the server with the channel name and the message. The server then

distributes the message among the subscribers of that particular channel by sending the ​‘push’

packets.

If the server receives a publish packet to a channel which has no current subscribers, it discards the

message unless the publisher indicates that the message is to be retained (see ​section 9.b for

retained packets). When a new subscriber subscribes to that channel (by sending a ​‘subscribe’

packet), the ​retained message for that channel is sent to the subscriber allowing the new subscriber

to receive the most current message of that channel rather than waiting for the next update from a

publisher.

There are two special types of channels available in JMQT, ​Control channels and ​P2P channels​. For

details on P2P and control packets, see ​section 9.d​.

6. Packet Types

JMQT protocol has the following packet types :

1. Auth (sent by the client to receive authentication token and client id)

2. Auth Acknowledgment (authentication status, token and client id sent back by the server)

3. Connect (sent by the client to establish a session, contains authentication token and client id)

4. Connect Acknowledgment (connection status sent back by the server)

5. Heartbeat (sent by the client in regular intervals to inform the server about its availability)

6. Heartbeat Acknowledgment (sent by the server to indicate that it is receiving the heartbeats)

7. Subscribe (sent by the client to subscribe to a channel)

8. Subscribe Acknowledgment (subscription status sent back by the server)

9. Unsubscribe (sent by the client to unsubscribe to a channel)

10.Unsubscribe Acknowledgment (unsubscription status sent back by the server)

11. Publish (sent by the client to publish a message to a channel)

JMQT 1.0 Specifications (3 of 16)

12.Publish Acknowledgment (publish status sent back by the server, this message is option

depending on the QOS)

13. Push (sent by the server to distribute a published message)

14. Push Acknowledgment (sent back by the client to indicate that it has received the push packet,

this message is optional depending on the QOS)

15.Disconnect (sent by the client to indicate that the client is willingly disconnecting the server)

7. Packet Structure

JMQT packets are JSON packets with the ​root element of the packet indicating the ​packet type​, i.e.

the packets look like the following :

{ <packet type> : {<packet data in JSON>}}

Any kind of data transferred in a packet can be a JSON object or a plain string, depending on the

business logic of the system. Any ​acknowledgement packet generated from the server contains a

status code (see ​section 8 for the details on the JMQT status codes) which indicates the status of the

action requested by the client.

Below is the detailed description of each of the packet types mentioned in ​section 6 with example

packets indicating the real-life scenarios :

a. Auth Packet

Auth packets are ​sent by the client to the server to ​authenticate itself and get an authentication token

for future communication. Auth packets contain the ​authentication information as a JSON object or a

string. Auth packets can be used for login or registration in web based applications, registration of the

client using IMEI or mac no., and so on.

Packet type code :​ auth

Parameters :

Parameter Key Type Required

Auth Data dt JSON / String Yes

Sample Packets :

1. Sample login :

{"auth":{"dt":{"login":{"email":"email@example.com","password":"my password"}}}}

2. Sample device registration using IMEI:

{"auth":{"dt":{"IMEI":"xxxxxxxxxxxxxxx"}}}

b. Auth Acknowledgement

Server MUST validate an ​auth packet and ​acknowledge to the client with an ​Auth Ack packet. This

auth ack packet contains a ​status code which denotes the status of the auth request (for details on

status code see section 8​), an ​optional authentication token & client id (if the authentication is

JMQT 1.0 Specifications (4 of 16)

successful), and an ​optional message (mentioning the reason in case the authentication is

unsuccessful). If the authentication is successful, the client will use the client id and auth token to

send the connect packet to the server.

Packet type code :​ authAck

Parameters :

Parameter Key Type Required

Status Code st Integer Yes

Auth Token at String Yes, if Status Code is 1

(OK)

Client ID cl String Yes, if Status Code is 1

(OK)

Message mg String Yes, if Status Code is

not 1 (OK)

Sample Packets :

1. Status code 1 (OK) :

{"authAck":{"st":1,"at":"my token","cl":"client 1"}}

2. Status code 0 (FAILED) :

{"authAck":{"st":0,"mg":"Email and/or password not valid"}}

c. Connect Packet

Connect packets are ​sent by the client to the server to ​establish a JMQT ​session​. ​Only the ​connected

clients with established session can ​perform the JMQT operations like ​publish​, ​subscribe​, ​unsubscribe

and ​receive push packets from the server. A connect packet contains the ​client id and auth token

which the client may receive from the server in the auth acknowledgement or can be preset into the

client program. A connect packet is followed by a connect ack generated by the server accepting or

declining the session request.

Packet type code :​ conn

Parameters :

Parameter Key Type Required

Auth Token at String Yes

Client ID cl String Yes

Sample Packets :

{"conn":{"at":"my token","cl":"client 1"}}

JMQT 1.0 Specifications (5 of 16)

d. Connect Acknowledgement

Server responds to a ​connect packet by sending a ​connect ack​. The connect ack notifies the client

that the server has accepted the session request or not. The server MUST validate the auth token and

client id sent by the client and return an appropriate ​status code along with the ​timeout seconds (no

of seconds the server will wait before closing an idle connection) in the connect ack.

Packet type code :​ connAck

Parameters :

Parameter Key Type Required

Status Code st Integer Yes

Timeout Seconds ts Integer Yes, if Status Code is 1

(OK)

Sample Packets :

1. Status code 1 (OK) :

{"connAck": {"st": 1, "ts": 15}}

2. Status code 0 (FAILED) :

{"connAck": {"st": 0}}

e. Heartbeat Packet

Once a session is established, the clients MUST send ​periodical heartbeat within the ​timeout seconds

specified by the server in the ​connect ack​. The heartbeat contains ​no data and just notifies the server

that the client is online and active. The server shall close a session if the client does not send

heartbeat packets for the timeout seconds. A client MUST send the heartbeats throughout an active

session.

Packet type code :​ hb

Parameters :​ No parameters

Sample Packets :​ ​{"hb":{}}

f. Heartbeat Acknowledgement

Server MUST respond to the ​heartbeats received from the connected clients with the ​heartbeat ack​.

The heartbeat ack notifies the client that the server is receiving its heartbeats and is online. The

server ​MUST not respond to any heartbeat packets if the ​client has not established the session yet by

sending the Connection Packet or t​he session has been closed​.

Packet type code :​ hbAck

JMQT 1.0 Specifications (6 of 16)

Parameters :​ No parameters

Sample Packets :​ ​{"hbAck":{}}

g. Subscribe Packet

Clients generate subscribe packets and send to the server to ​subscribe to a particular ​channel​. The

subscribe requests MUST be validated by the server and it sends back a status code notifying that the

subscription has been successful or not.

The subscribe packets also contains a ​flag notifying the ​persistence of the subscription. See ​section

9.c ​for the details of persistence subscription.

Subscription to ​control​ channels and ​P2P​ channels are ​not allowed​ (see ​section 9.d​ for details).

Packet type code :​ sub

Parameters :

Parameter Key Type Required

Channel Name cn String Yes

Persistence Flag pr Bit (0 or 1) No, default is 0

Sample Packets :

1. No persistent flag (default) :

{"sub":{"cn":"my channel"}}

2. Persistent flag on :

{"sub":{"cn":"my channel","pr":1}}

h. Subscribe Acknowledgement

The subscribe requests are ​validated by the server and it acknowledges with a ​status code and the

channel name​ notifying that the subscription has been successful or not.

Packet type code :​ subAck

Parameters :

Parameter Key Type Required

Channel Name cn String Yes

Status Code st Int Yes

JMQT 1.0 Specifications (7 of 16)

Sample Packets :

1. Status code 1 (OK) :

{"subAck": {"st": 1, "cn": "my channel"}}

2. Status code 0 (FAILED) :

{"subAck": {"st": 0, "cn": "my channel"}}

i. Unsubscribe Packet

Clients generate unsubscribe packets and send to the server to ​unsubscribe to a ​subscribed ​channel​.

The unsubscribe requests ​may be validated by the server, ​depending on the implementation​, though

it is ​not mandatory​. Unsubscribing means that the ​client won’t get any push messages published to

that particular channel​. If the client sends an unsubscription request to a channel which the client is

not subscribed to, the server may or may not send an error code (status code other than OK)

depending on the server implementation.

Packet type code :​ sub

Parameters :

Parameter Key Type Required

Channel Name cn String Yes

Sample Packets :

{"unsub":{"cn":"my channel"}}

j. Unsubscribe Acknowledgement

The unsubscribe requests are ​acknowledged by the server with a ​status code and the ​channel name

notifying that the unsubscription has been successful or not. The unsubscribe requests ​may be

validated​ by the server, depending on the implementation, though it is ​not mandatory​.

Packet type code :​ unsubAck

Parameters :

Parameter Key Type Required

Channel Name cn String Yes

Status Code st Int Yes

Sample Packets :

1. Status code 1 (OK) :

{"unsubAck": {"st": 1, "cn": "my channel"}}

JMQT 1.0 Specifications (8 of 16)

2. Status code 0 (FAILED) :

{"unsubAck": {"st": 0, "cn": "my channel"}}

k. Publish Packet

Clients ​send publish packet to the server to ​publish a message (or data) to a channel​. The data can

be a ​JSON object or a String​. A publish packet contains the channel and data, an optional QOS (for

details see ​section 9.a​), optional packet id (if QOS is set to 0) and an optional retained flag (see

section 9.b​ for details).

Packet type code :​ pub

Parameters :

Parameter Key Type Required

Channel Name cn String Yes

Data dt JSON or String Yes

QOS q Int No, default is 0

Packet Id id String Yes, if QOS is 1

Retained Flag rt Bit (0 or 1) No, default is 0

Sample Packets :

1. Basic publish packet with string data (QOS 0, Retained flag off) :

{"pub":{"cn":"my channel","dt":"my message"}}

2. Basic publish packet with JSON data (QOS 0, Retained flag off) :

{"pub":{"cn":"my channel","dt":{"msg": "my message"}}}

3. Publish packet with QOS 1, Retained flag off :

{"pub":{"cn":"my channel","dt":"my message","q":1,"id":"4"}}

4. Publish packet with QOS 1, Retained flag on :

{"pub":{"cn":"my channel","dt":"my message","q":1,"id":"4","rt":1}}

l. Publish Acknowledgment

If the ​QOS of a ​publish packet is set to ​1​, the server MUST send a ​publish acknowledgement ​to the

client. The server validates the publish packets and if the QOS is 1, it responds with a ​status code and

the ​packet id sent by the client. The ​server may decline a publish request based on the business

logic. If the ​client does not receive the acknowledgement of a QOS 1 packet, the client may ​retry

sending the packet using the same packet id.

Packet type code :​ pubAck

JMQT 1.0 Specifications (9 of 16)

Parameters :

Parameter Key Type Required

Status Code st Int Yes

Packet Id id String Yes, if QOS is 1

Sample Packets :

1. Status code 1 (OK) :

{"pubAck": {"st": 1, "id": "4"}}

2. Status code 0 (FAILED) :

{"pubAck": {"st": 0, "id": "4"}}

m. Push Packet

When a client sends a ​publish packet to the server, the server ​distributes the data to the ​subscribed

clients of the published channel using a ​push packet. The push packets ​look similar to the ​publish

packets, but it is ​sent from the server to the clients​. The ​QOS of the publish packet is ​replicated in

the push packet. The packet id of the push packets are ​maintained by the server. Push packets

contain the ​source client id of the message, and if the ​message is generated ​by the server​, then the

client id field is left ​blank (see ​section 9.e for details). The server ​may decide to store a push packet

depending on the QOS and retained flag (see ​section 9.a and ​9.b​). If the message is a retained

message, the retained flag will be sent ‘on’ or 1. Retained messages MUST not contain any packet id.

Packet type code :​ push

Parameters :

Parameter Key Type Required

Channel Name cn String Yes

Data dt JSON or String Yes

Source Client Id cl String Yes, can be empty

QOS q Int No, default is 0

Packet Id id String Yes, if QOS is 1

Retained Flag rt Bit (0 or 1) No, default is 0

Sample Packets :

1. Basic push packet with String data (QOS 0, Retained flag off) :

{"push":{"cn":"my channel","dt":"my message","cl":"client 1"}}

2. Basic push packet with JSON data (QOS 0, Retained flag off) :

{"push":{"cn":"my channel","dt":{"msg": "my message"},"cl":"client 1"}}

JMQT 1.0 Specifications (10 of 16)

3. Push packet with QOS 1, Retained flag off :

{"push":{"cn":"my channel","dt":"my message","cl":"client 1","q":1,"id":"400"}}

4. Push packet with Retained flag on :

{"push":{"cn":"my channel","dt":"my message","cl":"client 1","rt":1}}

n. Push Acknowledgment

If the ​QOS of a ​push packet is set to ​1​, the client MUST send a ​push acknowledgement ​to the server.

The push a​ck looks similar to the publish ack​. If the ​server does not receive a push ack​, it MUST ​store

the packet in some permanent storage and ​retry sending it ​when the client reconnects. Push ack for

the retain packets are not required.

Packet type code :​ pushAck

Parameters :

Parameter Key Type Required

Status Code st Int Yes

Packet Id id String Yes, if QOS is 1

Sample Packets :

{"pushAck": {"st": 1, "id": "400"}}

o. Disconnection Packet

If a client ​willingly closes a session​, it MUST send a ​disconnect packet to the server before the

disconnection. It ​notifies the server that the client connection is ​not being closed abruptly (due to

network problem or some other technical problem). The server may clear the cache and buffer

allocated for the client depending on the server implementation. The disconnect packet ​does not

contain any data inside its body. Any non-persistent subscription (refer to ​section 9.c​) will be

removed from the server after the client sends a disconnection packet.

Packet type code :​ disconn

Parameters :​ No parameters

Sample Packets :

{"disconn":{}}

8. Status Codes

JMQT status code is a integer indicating the status of a request. The server sends status code with

every acknowledgement against a request generated by the client. The JMQT client also sends a

status code against the push packets sent by the server.

JMQT 1.0 Specifications (11 of 16)

JMQT status code are listed below -

1 OK The requested action has been successfully completed by the

server

0 FAILED The server has failed to perform the requested task

5 SERVER ERROR Notifies that the server has encountered an error

6 INVALID TOKEN The token passed in ‘Conn’ packet is invalid

7 NOT ALLOWED The client is not allowed to perform the specific task

8 CLIENT OFFLINE Special response code for P2P messages notifying that the

destination client is offline.

10 INVALID PACKET The request packet is malformed

11 INVALID CHANNEL The channel is invalid. e.g. subscribing or unsubscribing to a

control or P2P channel

9 NETWORK ERROR Client program shall generate this error code if the client is

unable to connect the server

9. Operational Behaviour

a. Quality of Service

JMQT has a concept of ​QOS (Quality of Service). Depending on the QOS, the ​server ​may or may not

store and acknowledge to a ​‘publish’ packet, and the ​client ​may or may not acknowledge to a ​‘push’

packet. The QOS can either be 0 or 1. The ‘q’ key in a publish packet denotes the QOS. If ​no QOS is

mentioned in a packet, i.e. the ‘q’ key is not set, the server MUST ​consider the QOS as 0​. If QOS is

set to 1, the client MUST include a packet id (‘id’ key) in the publish packet.

Example :

1. Default QOS (QOS 0) :

{"pub":{"cn":"my channel","dt":"my message"}}

2. QOS 1 :

{"pub":{"cn":"my channel","dt":"my message","q":1,"id":"1"}}

If the ​QOS is set to ​‘0’ in a publish packet, the server will ​distribute the message (by sending ​push

packets which also have the ​QOS set to ​‘0​’) among the ​connected clients which are ​subscribed to the

channel and will ​forget the packet. This means, ​no offline subscriber will ​receive the message when

they reconnects. The ​online ​subscribers who will receive the ‘push’ message from the server, ​do not

need to acknowledge​ if the QOS is set to ‘0’.

Example of QOS 0 push packets:

{"push":{"cn":"my channel","dt":"my message","cl":"client id", "q":0}}

JMQT 1.0 Specifications (12 of 16)

If the ​QOS is set to ​‘1’ in a ​publish packet, the ​server will first ​store the message, then it will

distribute the message (by sending ​push packets with ​QOS set to ​‘1’​) among the ​connected clients

which are ​subscribed to the channel. The ​online ​subscribers who will ​receive the ‘push’ message from

the server, ​MUST acknowledge if the ​QOS is set to ‘1​’. If the server ​does not receive the push

acknowledgement from a client or the client is offline, it will ​send the ​stored message ​again when the

client reconnects to the server. The QOS 1 packets may be pushed to the client ​more than once to

ensure the delivery. The ​packet id ​of the push packets are ​generated by the ​server and ​independent

to the ​packet id sent by the client​ in the publish packet.

Example of QOS 1 push packets:

{"push": {"cn":"my channel","dt":"my message","cl":"client id", "id": "1", "q": 1}}

b. Retained Packets

The ​retained messages are used for allowing the new subscriber to receive the ​most current message

of that channel​ rather than waiting for the next update from a publisher.

Retained messages are different from the QOS. If a ​channel does not have any subscribed clients​,

QOS 1 messages are ​discarded by the server, whereas the ​retained messages are still ​stored for the

future subscribers​. There can be ​only one (the latest) ​retained message stored in the server for a

particular channel at any point of time. Server MUST send the retained messages to the client in two

situations : 1. When the client connects to the server and it has persistent subscriptions to a channel

(see ​section 9.c​). 2. When the client subscribes to a channel. The push packets MUST have the retain

flag on. ​Retained push packets do not have a packet id and retained flag is set to 1 to inform the

client that the packet is a retained packet. The clients ​do not need to send ​push ack for any retained

packets. Retained packets are not available for the Control and P2P channels.

A publish packet may have the ​retained flag (‘rt’ key) and ​QOS ​both set to ​1​, ​either of them set to ​1​,

or ​both set to ​0​. If the ​retained flag is not mentioned in a packet, the server MUST ​consider the

retained flag as ​0 or off​.

Example :

1. Publish packets with retain flag on :

{"pub":{"cn":"my channel","dt":"my message","rt":1}}

2. Push packets with retained messages :

{"push": {"cn":"my channel","dt":"my message","cl":"client id", "rt": "1"}}

c. Persistent Subscription

Persistent subscriptions are used to store the subscription in the server even after a client session is

closed.

The subscribe packets contains a ​flag notifying the ​persistence of the subscription. If the persistent

flag is on (i.e. 1), the server MUST ​store the subscription even if after the ​client session is closed​. If

the ​flag is off​ (i.e. 0), the server ​will remove the subscription​ mapping when the client ​disconnects​.

The server ​MUST store all the QOS 1 packets of the persistent ​channels even if the ​client is offline​.

The server MUST ​resend the ​stored messages once the client reconnects and establishes a new

session. Clients ​do not need to ​subscribe to channel ​again if the subscription is ​persistent until the

JMQT 1.0 Specifications (13 of 16)

client unsubscribes to the channel. Non-persistent subscriptions are automatically unsubscribed when

the client disconnects. To ​change the persistence of a subscription​, the client MUST ​unsubscribe to

the channel, and ​subscribe​ it ​again​ with the desired persistence flag.

Example :

1. Subscription with persistent flag on :

{"sub":{"cn":"my channel","pr":1}}

2. Subscription with persistent flag off / default :

{"sub":{"cn":"my channel","pr":0}}

d. P2P and Control Packets

There are two ​special types of channels​ available in JMQT, ​control​ channels and ​P2P​ channels.

Control channels are similar to the HTTP API calls. ​Control channels (​starts with $​) are used to

retrieve some information from the server itself. Implementation of control channels is optional and

server dependent. The client may publish a packet with or without data to a control channel which the

server MUST process and respond to the client. Any packet published to a control channel MUST

contain a packet id.

Example of control packets:

Step 1. Client publishes a message to control channel (to get a list of the subscribed channels) -

{"pub":{"cn":"$mySubscriptions","dt":{},"id":"2"}}

Step 2. Server responds back with publish ack with required data (list of the subscribed channels) -

{"pubAck": {"st": 1, "id": "2", "dt": {"channels": ["my channel"]}}}

P2P channels (​starts with #​) are used to ​send messages ​directly to one client from another client. In

order to send a P2P message, the sender MUST know the ​P2P address of the receiver. P2P messaging

is also optional, but it’s recommended in the applications where the clients always need to talk to

each other directly (e.g. chat applications) without the need of broadcasting a message to multiple

clients. The behaviour of P2P channels are just like the normal channels (i.e. it supports QOS) except

the P2P channels does not support retained packets.

Example of P2P packets:

1. P2P publish packet with QOS 1 -

{"pub":{"cn": "#my client 1", "dt": "my p2p message", "id": "5", "q": 1}}

2. P2P push packets -

{"push":{"cn":"#my client 1","dt":"my p2p message","cl":"my client 2","id": "401","q":

1}}

Clients are never allowed to subscribe to a control channel or a P2P channel. Subscriptions to the P2P

channels are controlled by the server (see ​section 9.e ​for details).

JMQT 1.0 Specifications (14 of 16)

e. Server side Sub, Unsub and Push

JMQT protocol includes the ​possibility to perform subscription and unsubscription ​initiated by the

server​.

When a client establishes a ​new session​, the server ​may make the client subscribe and/or

unsubscribe to certain channels without the subscription and/or unsubscription request generated by

the client. In case of ​P2P channels​, the ​subscription request should not be generated by the client​,

instead the server MUST ​perform the subscription to the P2P channels on behalf of the client when

the client establishes a session. In certain applications, it is also possible that the server will

completely decline any subscription or unsubscription request from the clients, and subscription or

unsubscription operations will be performed by the server itself.

Server can also push messages to all the available channels without having a publish packet received

from a client​. This ensures that the server may push required information (such as software update

notification, billing notification etc.) directly to the clients anytime the server wants. The push packets

generated by the server does not have any value assigned to the source client id (the ‘cl’ key in push

packets), instead the value is left empty (blank string). The QOS principle is similar to that of the

normal push packets. Follow is an example of a server side QOS 1 push packet :

{"push": {"cn": "server channel", "dt": "You have an update", "cl": "", "id": "402",

"q": 1}}

f. Disconnection behaviour

The client can disconnect the server (or end a session) in ​three ways - ​1. The client can just

close the socket or websocket connection​, ​2. The client may send a disconnection packet to the

server​, ​3. Both 1 and 2​. The ​recommended way of disconnection is way no. 3​, as it ensures the

server that the client is initiating the disconnection willingly and the server can clear the cache (if

any) assigned to that particular session. Disconnecting the socket or websocket is also important

because an unused socket or websocket connection may lead to network error in the client

system.

When a session is closed, the server MUST remove all non-persistent subscriptions from the

disconnected client along with the QOS 1 push packets mapped for that particular client. The

client SHOULD stop sending the heartbeat packets once the session is closed.

10. Authentication and security

In order to ​connect to the server, a client MUST send a combination of ​client id and ​authentication

token to the server. This ​authentication token and ​client id can be ​pre-configured in the client, or the

client can retrieve those credentials from the server by sending the Auth packet, which will contain

the authentication information like user id and password.

JMQT ​does not define any ​built-in encryption protocol. However, as it uses TCP connection (​Socket

and ​WebSocket​) for communications, ​TLS (​Transport Layer Security​) can easily be implemented on

top of ​socket​ and ​WebSocket​ to secure the incoming and outgoing messages.

JMQT 1.0 Specifications (15 of 16)

11. Default TCP Ports

Below is the list of the default TCP port numbers to be used by the JMQT applications :

● 8010 : Plain Socket

● 8011 : Plain WebSocket

● 8012 : SSL Socket

● 8013 : SSL WebSocket

JMQT 1.0 Specifications (16 of 16)

